Session 1: Where the Sidewalk Ends - Exploring Safe Street Design

William Riviere

Principal Planner and State Safe Routes to School Coordinator, NJDOT

Hannah Younes

Post Doctoral Research Associate - Bloustein School of Planning and Public Policy

James Sinclair

Senior Research Specialist - Voorhees Transportation Center, Rutgers University

Data

Safety Voyager & Numetric Bike/Ped Crashes 2016-2020 31,000+ crashes

Journal of Safety Research Volume 86, September 2023, Pages 137-147

Pedestrian- and bicyclist-involved crashes: Associations with spatial factors, pedestrian infrastructure, and equity impacts

Hannah Younes 🖾 , Robert B. Noland 🖾 , Leigh Ann Von Hagen 🖾 , Sean Meehan 🖾

Edward J. Bloustein School of Planning and Public Policy, Rutgers, The State University of New Jersey, 33 Livingston Avenue, New Brunswick, NJ 08901, USA

Municipality	•	Geocoded	All Crashes	% Geocoded
HOBOKEN CITY		349	341	97.71
PERTH AMBOY CITY		312	303	97.12
UNION CITY		475	460	96.84
MONTCLAIR TWP		249	241	96.79
BAYONNE CITY		410	394	96.10
JERSEY CITY		2067	1970	95.31
EDISON TWP		230	219	95.22
IRVINGTON TWP		630	597	94.76
CLIFTON CITY		338	320	94.67
LAKEWOOD TWP		512	484	94.53
ATLANTIC CITY		406	383	94.33
PASSAIC CITY		554	519	93.68
EAST ORANGE CITY		439	408	92.94
FORT LEE BORO		309	285	92.23
WOODBRIDGE TWP		275	253	92.00
TEANECK TWP		240	218	90.83
TRENTON CITY		495	447	90.30
NORTH BERGEN TWP		408	362	88.73
NEWARK CITY		2991	2586	86.46
WEST NEW YORK TOW	Ν	330	282	85.45
HACKENSACK CITY		390	329	84.36
NEW BRUNSWICK CITY	·	389	327	84.06
CAMDEN CITY		571	473	82.84
PATERSON CITY		1382	1129	81.69
ELIZABETH CITY		914	689	75.38

Crashes, Income, & Race

- 31,000 bike/ped crashes between 2016-2020
- 90% of crashes are geocoded.
- Crashes are less likely to be geocoded in lower income areas and areas with more minorities.
- Crashes **disproportionately** occur in overburdened communities.
 - Overburdened communities make up 21% of the NJ population
 - 40% of crashes occur in overburdened communities

Hotspots for Bicycle & Pedestrian Crashes per Capita

RUTGERS-NEW BRUNSWICK Edward J. Bloustein School of Planning and Public Policy Alan M. Voorhees Transportation Center

Results: Under what conditions are fatal crashes more likely to occur?

- Non-motorists aged **65+** were **2.6-3.4** times more likely to suffer a fatal injury.
- Road system: State/US highways are more likely to be fatal for pedestrians (3.4-3.6 times more likely).
- Light conditions: Compared to daylight, crashes that occurred in dark conditions (no street lights) were 6-7.5 times more likely to be fatal.
- Speed: a posted speed of > 40 mph was 2.9-3.0 times more likely to be deadly
- A truck or bus collision are particularly deadlier for cyclists: 10.8-13.7 times more than cars.
- No sidewalk nearby (20 meters): 1.6 times more likely to be fatal for pedestrians
- No crosswalk nearby (10 meters): 1.6 times more likely to be fatal for pedestrians
- Cyclist crashes in low-income areas are 1.6 times more likely to be fatal.

Data: Geocoded Safety Voyager Bicycle and/or Pedestrian Involved Crashes from 2016-2020

Addressing Speeds in School Zones

- Higher posted speeds →
 higher chance of fatality
- Lower speeds → more students walking
- Need for traffic calming

Example 1: 2009

Poll

Do you think drivers go 25 mph on this road during school hours?

- 1. Yes
- 2. No
- 3. I don't Know

Example 1: 2023

Do you think drivers go 25 mph on this road during school hours?

Poll

- 1. Yes
- 2. No

3. I don't Know

Example 2: 2007

Poll

Do you think drivers go 25 mph on this road?

- 1. Yes
- 2. No
- 3. I don't Know

Example 2: 2018

Poll

TT BULL 1 1 4885 1887 ;

Do you think drivers go 25 mph on this road?

- 1. Yes
- 2. No
- 3. I don't Know

NJ School Zone Safety Projects

- 4 out of 48 projects implemented traffic calming measures
- Measures implemented:
 Raised intersection
 - Curb extension
 - Speed humps
 - Speed hump & bulb out

Using Speed Studies

- Burden on municipalities, counties, state
- Data collected by police, engineers (standardized procedure)
- Data often collected in overburdened communities
- Collect during grant application phase & closeout
- Measures safety!

Speed Studies

- Infrastructure grants 5+ years to complete
- "After" speed survey measures outcomes, no matter the:
 - New housing construction
 - Closed or redistricted schools
 - Increased charter schools

I implemented proven safety counter-measures, how do I evaluate my project?

Speed for TMC segments Northbound (Weekday) Speed increased after sidewalk construction

After

Speed (mph)

40 n

35

30.

Hannah Younes, PhD

THANKS!

NJ Safe Routes Resource Center Help Desk srts@ejb.rutgers.edu

Websites NJ Safe Routes Resource Center saferoutesnj.org

Leigh Ann Von Hagen, AICP, PP Voorhees Transportation Center vtc.rutgers.edu

James Sinclair

Senior Research Specialists Voorhees Transportation Center, Rutgers Univer Transportation Center, Rutgers Univer

Where the Sidewalk Ends: Exploring Safe Street Design

James Sinclair

Senior Research Specialist -Voorhees Transportation Center, Rutgers University

Agenda

- Proven Safety Countermeasures
- Comfort
- Temporary Improvements
- Design Resources

Proven Safety Countermeasures

- Defined space for use by a person on foot or in a wheelchair
- Can be sidewalks, shared use paths, or shoulders
- Accessible, continuous, direct, firm, slip resistant
- Buffer zone from adjacent vehicle traffic is preferred

Benefits:

- Sidewalks: 65-89% reduction in crashes involving people walking on roadways
- Paved shoulders: up to 71% reduction in crashes involving people walking on roadways

• Public Right-of-Way Accessibility Guidelines

• Width: Federal minimum is 36"

- \circ NEW 48" min, exclusive of curb
- Wider is always better!
- Be careful with:
 - Vertical obstructions
 - Protruding objects
 - Slope

- Steep grades and cross slopes at driveways are dangerous
- Provide as level a surface as possible
- Sidewalks should NOT stop at driveways

- Shade and shelter
- Seating
- Lighting and signage
- Shops and stands
- Trash cans
- Bicycle Parking
- Water Fountains
- Fitness Stations

Crosswalk Visibility Enhancements

- High-visibility markings
- Improved lighting
- Parking restrictions on crosswalk approaches
- Curb extensions
- Advanced "Stop" markings and signs
- In-Street "Stop" signs

Benefits:

- ✓ High visibility crosswalks: up to 40% reduction in pedestrian injury crashes
- ✓ Intersection Lighting: up to **42%** reduction in pedestrian crashes
- ✓ Advance yield or stop markings: Up to 25% reduction in pedestrian crashes

Crosswalk Visibility Enhancements

swick stein School d Public Policy

Medians/Refuge Islands

- Enable pedestrians to focus on one direction of traffic at a time
- Especially beneficial on roadways with:
 - Heavy mix of ped/vehicle traffic
 - Multiple lanes in each direction
 - Posted speeds of 35 MPH or greater

Benefits:

✓ Up to **56%** reduction in pedestrian crashes

Roadway Reconfiguration (Road Diet)

Reduction in lanes, typically a 4- to 3-lane conversion

- Fewer lanes for pedestrians to cross
- Traffic calming and more consistent speeds
- Reduction of rear-end and left-turn crashes
- Offers opportunity to install refuge islands, bike lanes, on-street parking, and transit stops

Benefits:

✓ 4-lane to 3-lane roadway reconfigurations: 19-47% reduction in total crashes

Rectangular Rapid Flashing Beacon (RRFB)

- Enhances pedestrian warning signs with LED indicators
- Pushbutton or passive detection
- Placed on both sides of crosswalk
- Particularly effective at multi-lane crossings

Benefits:

- ✓ Up to 47% reduction in pedestrian crashes
- Can increase motorist yielding rates up to 98%

Pedestrian Hybrid Beacon

- Intermediate option between a flashing beacon and full signal
- Typically placed at midblock crossings or uncontrolled intersections on multi-lane, higher speed, higher volume roadways
- Lenses remain "dark" until activated by a pedestrian

Benefits:

- ✓ Up to 55% reduction in pedestrian crashes
- ✓ Up to **29%** reduction in total crashes
- Up to 15% reduction in serious injury and fatal crashes

Bicycle Lanes

1. Reducing conflict

2. Visibility

3. Right-of-way

One-way Protected Bicycle Lane

- 5 feet bike lane + 3 feet buffer minimum
- Not optimal if there are many driveways or close intersections
- Need to think about loading areas, bus stops, and turning vehicles

Bicycle Path

- Two-way
- Minimum 8-feet, preferred 10-feet, best 12-feet+
- Best with minimal intersections and driveways

Traffic Calming and Bicycle Boulevards

- For quiet residential streets
- Use signage and traffic calming

Traffic Diversions

Neckdowns / Chicanes

Speed Bumps and Raised Crosswalks

Lighting

- If it's not Complete at night, it is not Complete
- Lighting provides visibility for safety and security
- Pedestrian scale lighting, below the tree line
- Intersections, roundabouts, and crossings require special lighting

Lighting

- Aesthetics
- Light pollution

Figure 9B-6. Example of Application of Bicycle Jughandle Sign

46

Design Guides

2017 State of New Jersey Complete Streets Design Guide

SIDEWALKS ROADWAYS

Chicanes

Chicanes are a series of raised or delineated curb extensions, edge islands, or parking bays that are placed on alternating sides of a street to form an S-shaped bend in the roadway. Chicanes reduce whide speeds by requiring drivers to shift laterally through narrow travel lanes.

Speed Humps

INTERSECTIONS

Speed humps are typically 3 to 4 inches high and 12 to 14 feet long, and are designed with an interded vehicle speed of 15 to 20 mph. Humps are often referred to as "bumps" on signage and by the general public.

Center Islands

Center islands create pinch points for traffic by narrowing the width of the travel lanes and reducing pedestrian crossing distances. A center island causes a small amount of deflection without Nocking driveway access. Center islands impede highspeed left turns and keep drivers in the correct receiving lane.

- C A A

Speed Cushions

Speed cushions are speed humps or speed tables that include wheel cutouts that allow larger vehicles to pass unaffected but reduce passenger vehicle speeds. They are often used on key emergency response routes to allow emergency vehicles to pass unimpeded while causing the typical passenger vehicle to slow down. Speed cushions should be used with caution, however, as drivers will often saek out the space in between the humps.

Design Guides

New Jersey School Zone Design Guide

to School

- Highlights physical improvements for School Zones
- Examples gathered from throughout New Jersey

Available at: <u>saferoutesnj.org</u>

Other Guides - FHWA

BIKEWAY SELECTION GUIDE

FEBRUARY 2019

Small Town and Rural Multimodal Networks

US. Department of Transportation Federal Highway Administratio TRAFFIC ANALYSIS AND INTERSECTION CONSIDERATIONS TO INFORM BIKEWAY SELECTION

U.S. Department of Transportation Federal Highway Administration

February 2021

Other Guides - NACTO

DETAILS

DETAILS

DETAILS

Other Guides – Street Plans

TACTICAL URBANIST'S GUIDE TO MATERIALS AND DESIGN VERSION 1.0

DECEMBER 2016 | CREATED BY THE STREET PLANS COLLABORATIVE, WITH FUNDING FROM THE JOHN S. AND JAMES L. KNIGHT FOUNDATION

Bloomberg Associates

Asphalt Art Guide

How to Reclaim City Roadways and Public Infrastructure with Art

Webinar: How to Adopt or Update a Complete and Green Streets Policy

Learn how to create and adopt your own custom municipal Complete & Green Streets Policy. If you already have a policy, learn how to upgrade with the NJ Model Policy. This free one-hour webinar for municipal officials, staff, or consultant representatives is sponsored by the NJDOT Bureau of Safety, Bicycle and Pedestrian Programs and the North Jersey Transportation Planning Authority and organized by Sustainable Jersey.

- Tuesday, September 17, 2024, noon to 1:00pm
- Follow-up Open House Q&A for attendees to be held virtually on Wednesday, October 30, 2024 from 3:00-5:00pm

https://go.rutgers.edu/CSPolicy

Webinar: How to Adopt or Update a Complete and Green Streets Policy

Learn how to create and adopt your own custom municipal Complete & Green Streets Policy. If you already have a policy, learn how to upgrade with the NJ Model Policy. This free onehour webinar for municipal officials, staff, or consultant representatives is sponsored by the NJDOT Bureau of Safety, Bicycle and Pedestrian Programs and the North Jersey Transportation Planning Authority and organized by Sustainable Jersey.

- Tuesday, September 17, 2024, noon to 1:00pm
- Follow-up Open House Q&A for attendees to be held virtually on Wednesday, October 30, 2024 from 3:00-5:00pm

https://go.rutgers.edu/CSPolicy

Thank you!

BICYCLE & PEDESTRIAN RESOURCE CENTER

Educate. Encourage. Empowe

Contact: NJ Bicycle & Pedestrian Resource Center **njbikeped.org** Telephone: (848) 932-3714 Email: bikeped@ejb.rutgers.edu

NEW JERSEY Safe Routes to School

www.saferoutesnj.org

Contact: NJ Safe Routes Resource Center **saferoutesnj.org** Telephone: (848) 932-7901 Email: srts@ejb.rutgers.edu

